The Mudcat Café TM
Thread #104378   Message #2413194
Posted By: Amos
14-Aug-08 - 01:08 AM
Thread Name: BS: Random Traces From All Over
Subject: RE: BS: Random Traces From All Over
A hand holding a biological brain and a robot. The brain consists of a collection of neurons cultured on a Multi Electrode Array (MEA) which communicates and controls the robot via a Bluetooth connnection. Scientists in Britain announced that they had stitched together thousands of rat neurons into primitive brains capable of controlling the movement of robots.

Meet Gordon, probably the world's first robot controlled exclusively by living brain tissue. Stitched together from cultured rat neurons, Gordon's primitive grey matter was designed at the University of Reading by scientists who unveiled the neuron-powered machine on Wednesday.

Their groundbreaking experiments explore the vanishing boundary between natural and artificial intelligence, and could shed light on the fundamental building blocks of memory and learning, one of the lead researchers told AFP.

"The purpose is to figure out how memories are actually stored in a biological brain," said Kevin Warwick, a professor at the University of Reading and one of the robot's principle architects.

Observing how the nerve cells cohere into a network as they fire off electrical impulses, he said, may also help scientists combat neurodegenerative diseases that attack the brain such as Alzheimer's and Parkinson's.

"If we can understand some of the basics of what is going on in our little model brain, it could have enormous medical spinoffs," he said.

Looking a bit like the garbage-compacting hero of the blockbuster animation "Wall-E", Gordon has a brain composed of 50,000 to 100,000 active neurons.

Once removed from rat foetuses and disentangled from each other with an enzyme bath, the specialised nerve cells are laid out in a nutrient-rich medium across an eight-by-eight centimetre (five-by-five inch) array of 60 electrodes.

This "multi-electrode array" (MEA) serves as the interface between living tissue and machine, with the brain sending electrical impulses to drive the wheels of the robots, and receiving impulses delivered by sensors reacting to the environment.