The Mudcat Café TM
Thread #87391   Message #2884841
Posted By: Amos
12-Apr-10 - 11:23 AM
Thread Name: BS: Where's the Global Warming
Subject: RE: BS: Where's the Global Warming
Scientists find errors in hypothesis linking solar flares to global temperature

April 7, 2010 By Lisa Zyga
(PhysOrg.com)

In contrast to a previous analysis, a new study has shown that the distributions of (a) the global temperature anomaly by month since 1880 and (b) the solar flare index by day over a few solar cycles are fundamentally different. One feature the detrended data do have in common is self-similarity: the probability density functions are the same on different time scales, which means that neither can be described as Lévy walks.

The field of climate science is nothing if not complex, where a host of variables interact with each other in intricate ways to produce various changes. Just like any other area of science, climate science is far from being fully understood. As an example, a new study has discredited a previous hypothesis suggesting the existence of a link between solar flares and changes in the earth's global temperature. The new study points out a few errors in the previous analysis, and concludes that the solar and climate records have very different properties that do not support the hypothesis of a sun-climate complexity linking.


In a handful of studies published in Physical Review Letters between 2003 and 2008, a team from Duke University and the Army Research Office including Nicola Scafetta and Bruce West analyzed data that appeared to show that solar flares have a significant influence on global temperature. Solar flares, which are large explosions in the sun's atmosphere that are powered by magnetic energy, vary in time from a few per month to several per day.

Although solar flares occur near sunspots, their frequency variation occurs on a much shorter time scale than the 11-year sunspot cycle. In their studies, the researchers' results seemed to show that data from solar flare activity correlates with changes in the global temperature on a short time scale. Specifically, their analysis showed that the two time records can both be characterized by the same Lévy walk process.

However, in the new study, which is also published in Physical Review Letters, Martin Rypdal and Kristoffer Rypdal of the University of Tromso in Norway have reexamined the data and the previous analysis and noticed some shortcomings. One of the biggest causes of concern is that the previous analysis did not account for larger trends in factors that affect solar flares and global temperature. For instance, the solar cycle has its 11-year periodic trend, where periods of lots of sunspots cause larger numbers of solar flares. Likewise, the global temperature anomaly has numerous other factors (a "multi-decadal, polynomial trend") that impacts global temperature fluctuations. By not detrending this data, the analysis resulted in abnormally high values of certain variables that pointed to Lévy walk processes.

By estimating the untrended data, Rypdal and Rypdal hypothesized that the solar flare records might be described by a Lévy flight, while the global temperature anomaly might obey a distribution called persistent fractional Brownian motion.