The Mudcat Café TM
Thread #59418   Message #2812674
Posted By: Amos
15-Jan-10 - 10:24 AM
Thread Name: BS: The Mother of all BS threads
Subject: RE: BS: The Mother of all BS threads
After the quark-gluon plasma filled the universe for a few millionths of a second after the big bang, it was over 13 billion years until experimenters managed to recreate the extraordinarily hot, dense medium on Earth. The JET Collaboration, a team from six universities and three national laboratories led by Berkeley Lab's Nuclear Science Division, is now developing a new and highly detailed theoretical picture of this unique state of the early universe.

The Department of Energy's Office of Nuclear Physics recently named Berkeley Lab's Nuclear Science Division to lead a nine-institution collaboration investigating the "Quantitative Jet and Electromagnetic Tomography of Extreme Phases of Matter in Heavy-Ion Collisions" - JET, for short.

... The quark-gluon plasma filled the Universe a few millionths of a second after the big bang but instantly vanished, condensing into the protons and neutrons and other particles from which the present Universe descended.

Some 13.7 billion years later, experimenters recreated the quark-gluon plasma on Earth, using the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The first heavy-ion collisions occurred at RHIC in 2000, but confirming the occurence of the quark-gluon plasma in these events took several more years of data collection and analysis.

Freeing the quarks

Quarks come in three different "colors," and it takes three quarks to build a proton or a neutron; as carriers of the color charge, an aspect of the strong nuclear interaction, gluons literally glue the quarks together.

Under ordinary conditions neither quarks nor gluons are ever free. The farther apart they get, the stronger the force between them. Because mass and energy are interchangeable, as described by Einstein's E=Mc2, eventually the energy that would be needed to separate them goes into creating new bound quarks instead.

RHIC was designed to collide heavy nuclei (as heavy as gold, whose nucleus consists of 79 protons and 118 neutrons) at energies so high that during the near-light-speed collisions, conditions cease to be anything like ordinary. Dense, hot fireballs blossom in the collisions, forming a plasma in which neither quarks nor gluons are bound together; instead they move independently with almost complete freedom.


Above suggests we should be very careful around the duckdog, maybe spell words out instead of saying them, that sort of thing.



A