The Mudcat Café TM
Thread #131699   Message #2993226
Posted By: GUEST,josep
24-Sep-10 - 08:09 PM
Thread Name: BS: The God Delusion 2010
Subject: RE: BS: The God Delusion 2010
For snail:

Quantum mechanics and classical physics

Predictions of quantum mechanics have been verified experimentally to a very high degree of accuracy. According to the correspondence principle between classical and quantum mechanics, all objects obey the laws of quantum mechanics, and classical mechanics is just an approximation for large systems (or a statistical quantum mechanics of a large collection of particles). The laws of classical mechanics thus follow from the laws of quantum mechanics as a statistical average at the limit of large systems or large quantum numbers.[30] However, chaotic systems do not have good quantum numbers, and quantum chaos studies the relationship between classical and quantum descriptions in these systems.

Quantum coherence is an essential difference between classical and quantum theories, and is illustrated by the Einstein-Podolsky-Rosen paradox. Quantum interference involves the addition of probability amplitudes, whereas when classical waves interfere there is an addition of intensities. For microscopic bodies, the extension of the system is much smaller than the coherence length, which gives rise to long-range entanglement and other nonlocal phenomena characteristic of quantum systems.[31] Quantum coherence is not typically evident at macroscopic scales, although an exception to this rule can occur at extremely low temperatures, when quantum behavior can manifest itself on more macroscopic scales (see Bose-Einstein condensate). This is in accordance with the following observations:

    * Many macroscopic properties of a classical system are a direct consequences of the quantum behavior of its parts. For example, the stability of bulk matter (which consists of atoms and molecules which would quickly collapse under electric forces alone), the rigidity of solids, and the mechanical, thermal, chemical, optical and magnetic properties of matter are all results of the interaction of electric charges under the rules of quantum mechanics.[32]
    * While the seemingly exotic behavior of matter posited by quantum mechanics and relativity theory become more apparent when dealing with extremely fast-moving or extremely tiny particles, the laws of classical Newtonian physics remain accurate in predicting the behavior of large objects—of the order of the size of large molecules and bigger—at velocities much smaller than the velocity of light.[33]

http://en.wikipedia.org/wiki/Quantum_mechanics